483 research outputs found

    Gene-history correlation and population structure

    Full text link
    Correlation of gene histories in the human genome determines the patterns of genetic variation (haplotype structure) and is crucial to understanding genetic factors in common diseases. We derive closed analytical expressions for the correlation of gene histories in established demographic models for genetic evolution and show how to extend the analysis to more realistic (but more complicated) models of demographic structure. We identify two contributions to the correlation of gene histories in divergent populations: linkage disequilibrium, and differences in the demographic history of individuals in the sample. These two factors contribute to correlations at different length scales: the former at small, and the latter at large scales. We show that recent mixing events in divergent populations limit the range of correlations and compare our findings to empirical results on the correlation of gene histories in the human genome.Comment: Revised and extended version: 26 pages, 5 figures, 1 tabl

    Robustness of the approximate likelihood of the protracted speciation model

    Get PDF
    The protracted speciation model presents a realistic and parsimonious explanation for the observed slowdown in lineage accumulation through time, by accounting for the fact that speciation takes time. A method to compute the likelihood for this model given a phylogeny is available and allows estimation of its parameters (rate of initiation of speciation, rate of completion of speciation and extinction rate) and statistical comparison of this model to other proposed models of diversification. However, this likelihood computation method makes an approximation of the protracted speciation model to be mathematically tractable: it sometimes counts fewer species than one would do from a biological perspective. This approximation may have large consequences for likelihood-based inferences: it may render any conclusions based on this method completely irrelevant. Here, we study to what extent this approximation affects parameter estimations. We simulated phylogenies from which we reconstructed the tree of extant species according to the original, biologically meaningful protracted speciation model and according to the approximation. We then compared the resulting parameter estimates. We found that the differences were larger for high values of extinction rates and small values of speciation-completion rates. Indeed, a long speciation-completion time and a high extinction rate promote the appearance of cases to which the approximation applies. However, surprisingly, the deviation introduced is largely negligible over the parameter space explored, suggesting that this approximate likelihood can be applied reliably in practice to estimate biologically relevant parameters under the original protracted speciation model

    Spatio-temporal variation in European starling reproductive success at multiple small spatial scales

    Get PDF
    Funding Information This work received funding from the Natural Environment Research Council, Fair Isle Bird Observatory Trust and the Royal Society. Acknowledgments We thank Jessica Walkup, Jeroen Minderman, and many volunteers for help with data collection; Deryk and Hollie Shaw and Fair Isle Bird Observatory staff for help and support; Xavier Lambin and Justin Travis for comments on the manuscript and NERC (DB); and Fair Isle Bird Observatory Trust (DB) and the Royal Society (JMR) for funding.Peer reviewedPublisher PD

    The programming of sequences of saccades

    Get PDF
    Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in paralle

    The concurrent programming of saccades

    Get PDF
    Sequences of saccades have been shown to be prepared concurrently however it remains unclear exactly what aspects of those saccades are programmed in parallel. To examine this participants were asked to make one or two target-driven saccades: a reflexive saccade; a voluntary saccade; a reflexive then a voluntary saccade; or vice versa. During the first response the position of a second target was manipulated. The new location of the second saccade target was found to impact on second saccade latencies and second saccade accuracy showing that some aspects of the second saccade program are prepared in parallel with the first. However, differences were found in the specific pattern of effects for each sequence type. These differences fit well within a general framework for saccade control in which a common priority map for saccade control is computed and the influence of saccade programs on one another depends not so much on the types of saccade being produced but rather on the rate at which their programs develop

    Multi-Timescale Perceptual History Resolves Visual Ambiguity

    Get PDF
    When visual input is inconclusive, does previous experience aid the visual system in attaining an accurate perceptual interpretation? Prolonged viewing of a visually ambiguous stimulus causes perception to alternate between conflicting interpretations. When viewed intermittently, however, ambiguous stimuli tend to evoke the same percept on many consecutive presentations. This perceptual stabilization has been suggested to reflect persistence of the most recent percept throughout the blank that separates two presentations. Here we show that the memory trace that causes stabilization reflects not just the latest percept, but perception during a much longer period. That is, the choice between competing percepts at stimulus reappearance is determined by an elaborate history of prior perception. Specifically, we demonstrate a seconds-long influence of the latest percept, as well as a more persistent influence based on the relative proportion of dominance during a preceding period of at least one minute. In case short-term perceptual history and long-term perceptual history are opposed (because perception has recently switched after prolonged stabilization), the long-term influence recovers after the effect of the latest percept has worn off, indicating independence between time scales. We accommodate these results by adding two positive adaptation terms, one with a short time constant and one with a long time constant, to a standard model of perceptual switching

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p

    Setting things straight: a comparison of measures of saccade trajectory deviation

    Get PDF
    In eye movements, saccade trajectory deviation has often been used as a physiological operationalization of visual attention, distraction, or the visual system’s prioritization of different sources of information. However, there are many ways to measure saccade trajectories and to quantify their deviation. This may lead to noncomparable results and poses the problem of choosing a method that will maximize statistical power. Using data from existing studies and from our own experiments, we used principal components analysis to carry out a systematic quantification of the relationships among eight different measures of saccade trajectory deviation and their power to detect the effects of experimental manipulations, as measured by standardized effect size. We concluded that (1) the saccade deviation measure is a good default measure of saccade trajectory deviation, because it is somewhat correlated with all other measures and shows relatively high effect sizes for two well-known experimental effects; (2) more generally, measures made relative to the position of the saccade target are more powerful; and (3) measures of deviation based on the early part of the saccade are made more stable when they are based on data from an eyetracker with a high sampling rate. Our recommendations may be of use to future eye movement researchers seeking to optimize the designs of their studies
    • …
    corecore